The Elemental Composition of PM_{2.5} Collected During the Steubenville Comprehensive Air Monitoring Program

Air & Waste Management Association 98th Annual Conference & Exhibition Minneapolis, Minnesota June 23, 2005

D. P. Connell, S. E. Winter, V. B. Conrad

SCAMP

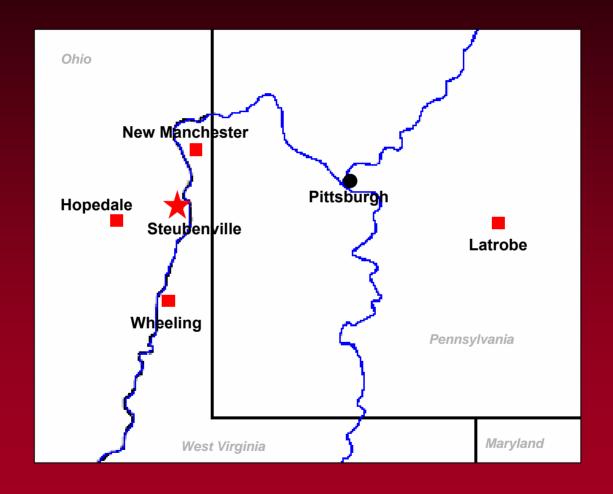
- Two-year comprehensive program for monitoring PM_{2.5} and co-pollutants
- Steubenville, Ohio, and surrounding region
- May 2000 May 2002
- Two major study components:
 - Indoor/Personal
 - Personal sampling of children and elderly volunteers
 - Indoor sampling in participants' homes
 - Outdoor
 - Participants' homes
 - Central site in Steubenville
 - Four remote sites located at cardinal compass points around Steubenville

Today's Presentation

- SCAMP Outdoor Ambient Air Monitoring Network
 - Central Steubenville site
 - Four satellite sites
- Elemental Composition of the Water-Soluble PM_{2.5}
 Fraction
 - Samples collected every 4th day using PM_{2.5} FRM
 - Water-soluble components extracted ultrasonically using ultra-pure DI water with 2% IPA (wetting agent)
 - Elemental determination by Dynamic Reaction Cell ICP-MS (PerkinElmer ELAN 6100 DRC)
 - 21 elements of interest
 - Ge and In used as internal standards to correct for drift
 - Results validated using NIST 1643d

Studies of PM_{2.5} Elemental Composition in Steubenville

- Koutrakis and Spengler (1987)
 - Elemental data collected in 1984 (XRF)
 - SRFA applied to identify six possible sources of PM_{2.5}
- Laden, Neas, Dockery, and Schwartz (2000)
 - Elemental data collected from 1979 through late 1980s (XRF)
 - Investigated associations among mortality and PM_{2.5} sources


SCAMP

- Reflects changes in Steubenville over past 15+ years
- DRC ICP-MS
- Water-soluble and "total" (acid-digestible) PM_{2.5} fractions

SIP Development, Health Effects

Outdoor Ambient Monitoring Sites

Outdoor Ambient Monitoring Sites

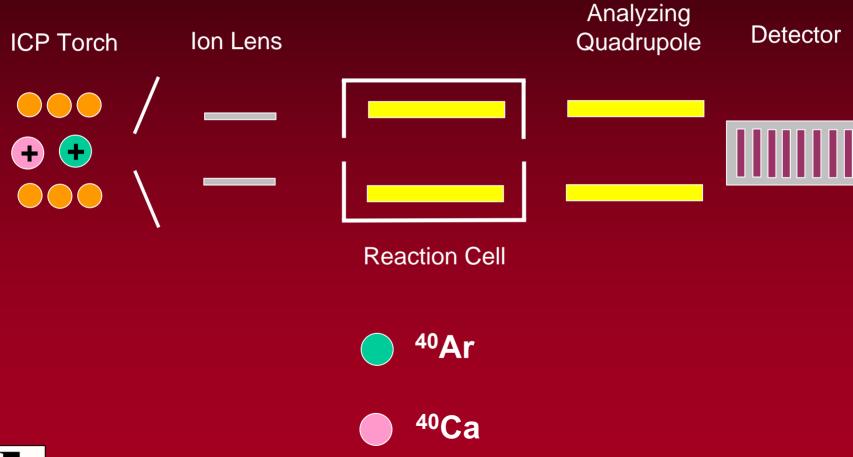
ICP-MS

- Sensitivity
 - ppb to ppt for many trace elements of interest
 - Generally better than XRF
- Capable of determining multiple isotopes
- Destructive technique
 - Can compare water-soluble vs. acid-digestible fractions

Major Limitation: Interferences

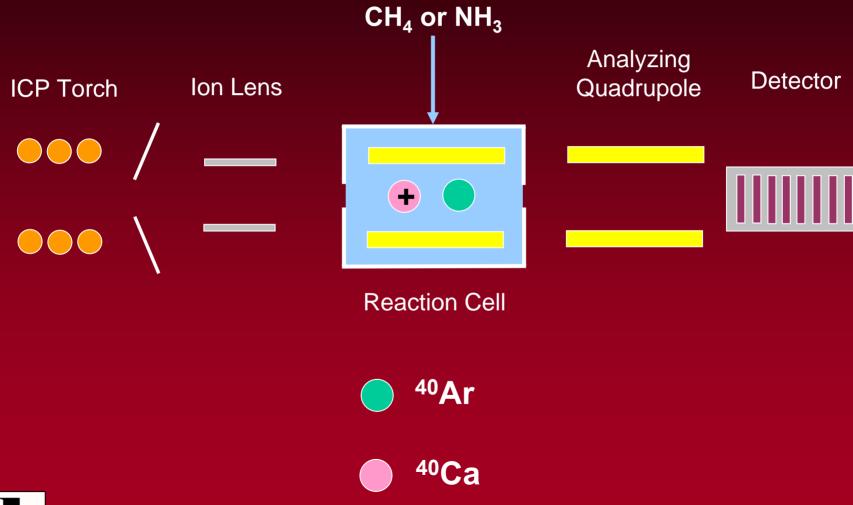
Isobaric

40Ar+ ⇔ 40Ca

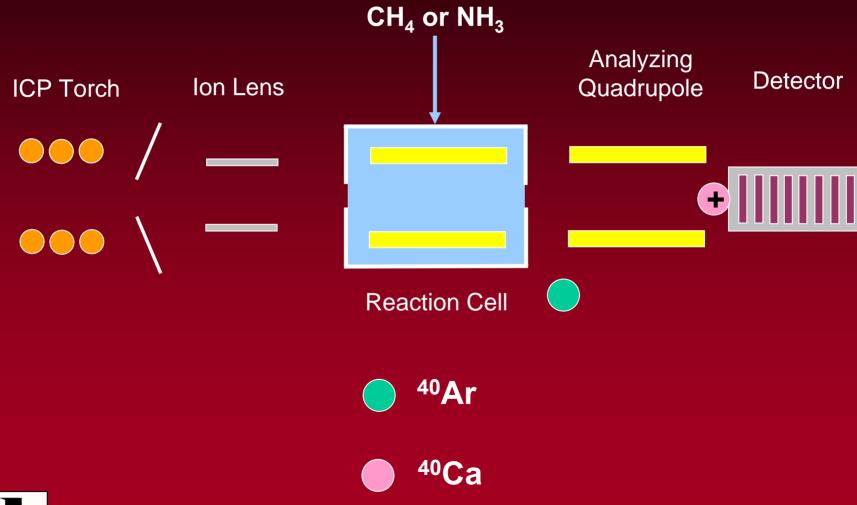

<u>Polyatomic</u>

 $^{40}Ar^{35}Cl^{+} \Leftrightarrow ^{75}As$

Affected Species Include:



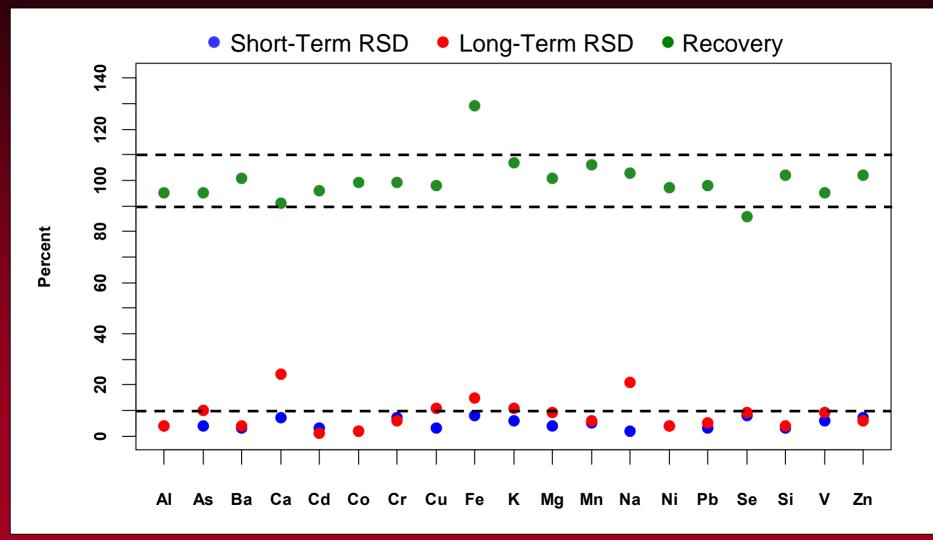
Dynamic Reaction Cell ICP-MS



Dynamic Reaction Cell ICP-MS

Dynamic Reaction Cell ICP-MS

DRC ICP-MS Detection Limits

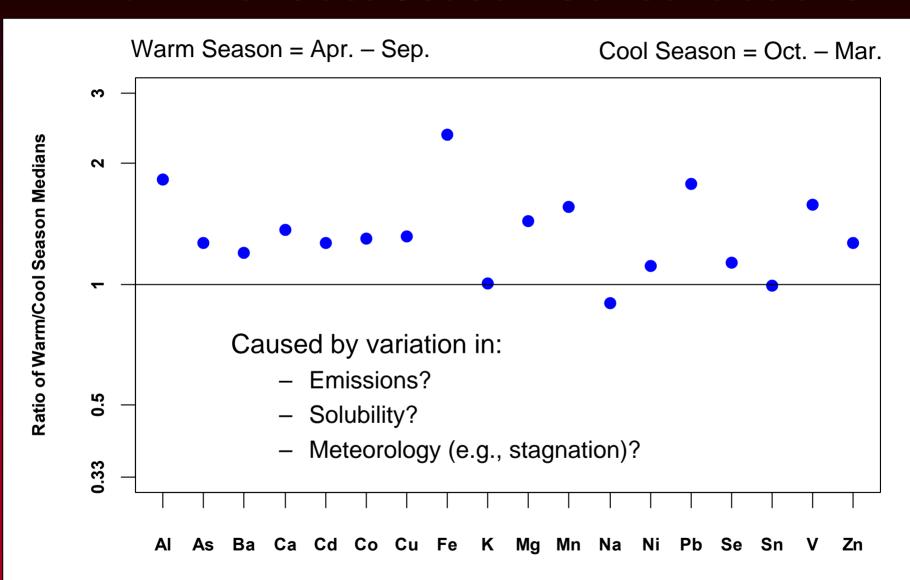

	DL (ng/m³)	% Obs < DL
Al	0.1	0
As	0.04	0
Ва	0.01	0
Ca	1,3,12,27	0
Cd	0.01	0
Со	0.002	1
Cr	0.03,2.16	79
Cu	0.04	0
Fe	0.2,1.8,5.2	4
K	0.3,0.4,0.5,69	5 /

	DL (ng/m³)	% Obs < DL
	, , ,	, DL
Mg	0.1,0.2	0
Mn	0.8	9
Na	1,2	0
Ni	0.1,0.2	2
Pb	0.1	1
Se	0.05,0.26	1
Si	6,7,25	3
S n	0.021	5
V	0.08	3
Zn	0.2	0

DRC ICP-MS Performance

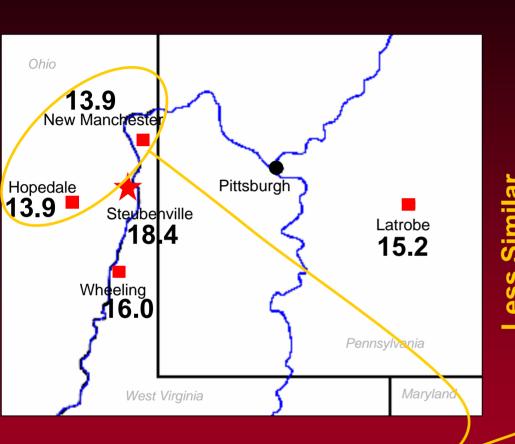
Based on Determinations of NIST 1643d (10x Dilution)

Summary Statistics

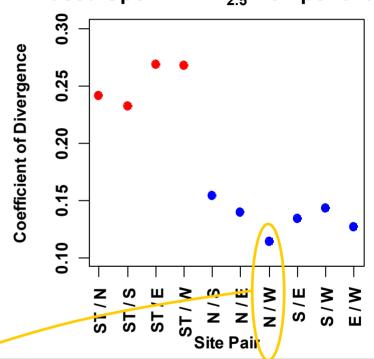

Elements in the Water-Soluble Fraction at Steubenville

	Mean (ng/m³)	Max (ng/m³)	RfC ^a (ng/m³)
Al	18.8	124.3	
As	2.37	18.27	30
Ва	1.9	8.6	
Ca	85	310	
Cd	0.50	7.16	20
Со	0.038	0.132	100
Cu	3.2	26.4	
Fe	19.6	136.4	
K	99	314	

	Mean (ng/m³)	Max (ng/m³)	RfC ^a (ng/m³)
Mg	30	321	
Mn	7.8	41.3	50
Na	90	501	
Ni	0.7	6.9	50
Pb	8.9	121.6	1,500
Se	4.71	33.91	20,000
Sn	0.215	2.354	
V	1.04	7.80	
Zn	55.6	435.5	



Warm vs. Cool Season Concentrations



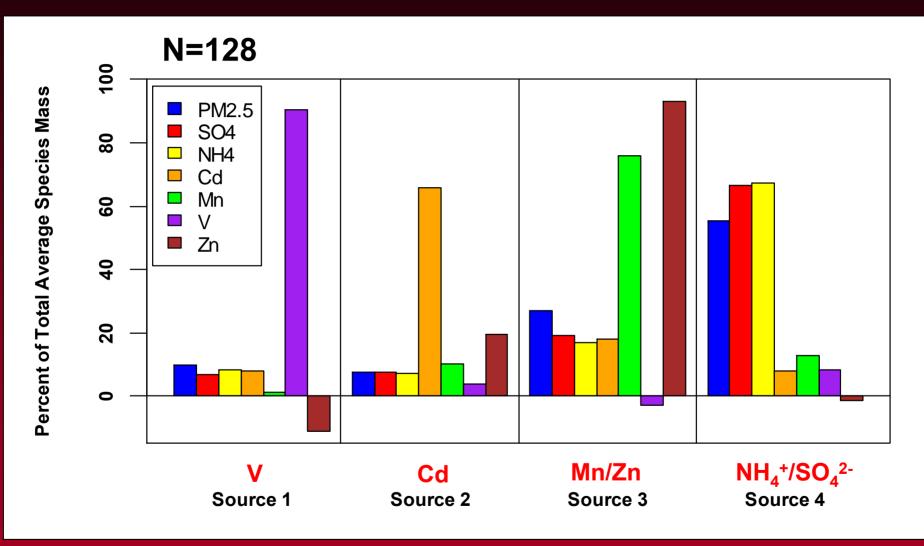
Spatial Variability

Intersite Coefficients of Divergence Based Upon 21 PM_{2.5} Components

"Background" Sites

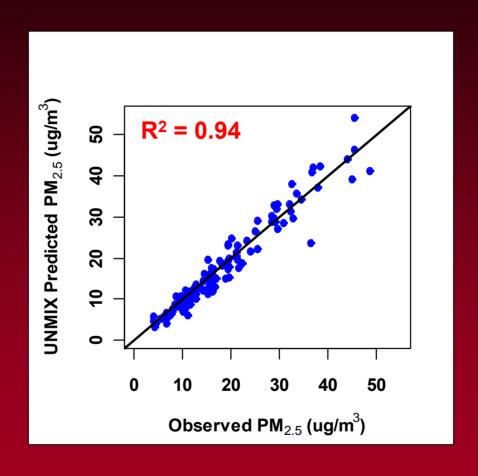
$$CD_{jk} = \sqrt{\frac{1}{p} \sum_{i=1}^{p} \left(\frac{x_{ij} - x_{ik}}{x_{ij} + x_{ik}} \right)^{2}}$$

Local Source Contributions


Elements in the Water-Soluble Fraction

	% ST > BG	Loc. (ng/m³)	Loc. (% of BG)
Al	71	4.8	49
As	73	0.66	43
Ba	79	0.7	65
Ca	73	28	46
Cd	71	0.10	31
Со	43	-0.004	-10
Cu	59	0.7	31
Fe	71	11.8	106
K	59	16	21

	% ST > BG	Loc. (ng/m³)	Loc. (% of BG)
Mg	79	18	145
Mn	83	4.5	154
Na	73	19	32
Ni	47	0.1	11
Pb	69	3.1	78
Se	54	-0.44	-9
Sn	38	-0.017	-9
V	63	0.44	66
Zn	75	25.5	140



UNMIX Source Apportionment Results Steubenville Site

UNMIX Source Apportionment Results (2) Steubenville Site

A Closer Look at Source 3

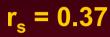
$$[Mn]_{TOT} = 1.71[Mn]_{WS} + 0.61$$

 $[Zn]_{TOT} = 1.02[Zn]_{WS} + 21.95$

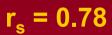
- \rightarrow Source 3 Mn/Zn = 0.14
- \rightarrow Source 2 Mn/Zn = 0.06

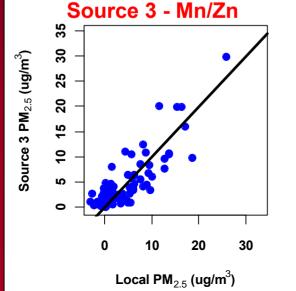
2001 TRI (Air Emissions) in Jefferson County, OH

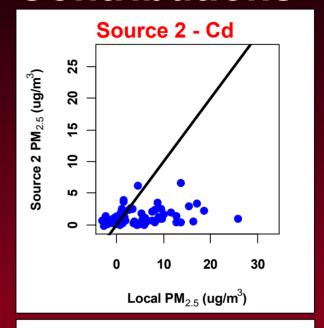
Mn/Zn for primary metals industry = 0.16

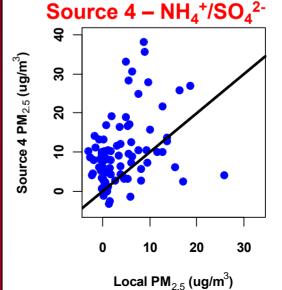

Mn/Zn for electric utilities = 0.42

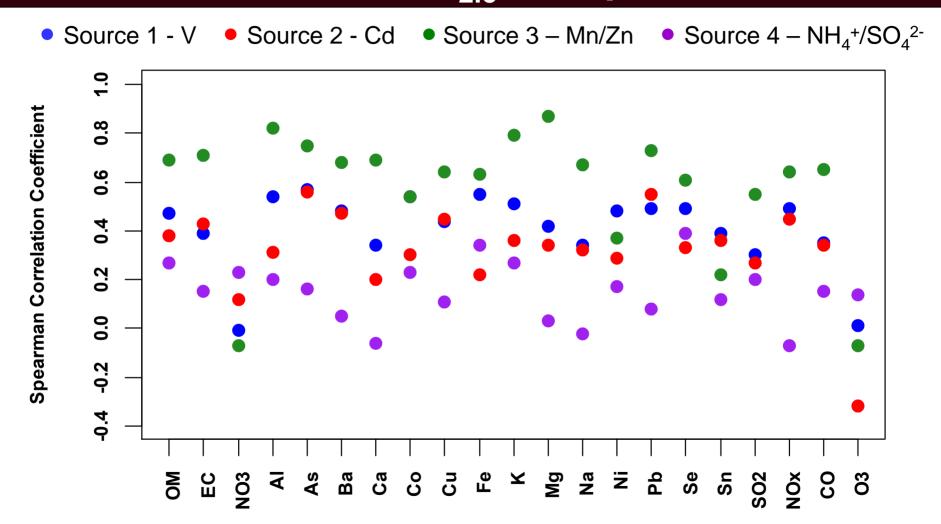
Koutrakis and Spengler (1987)


Mn/Zn for iron and steel production = 0.15


UNMIX-Derived Source Contributions vs. Local Source Contributions







$$r_{s} = 0.36$$

$$r_{\rm s} = 0.31$$

Correlations – UNMIX-Derived Source Contributions vs. PM_{2.5} Components, Gases

Summary

- DRC ICP-MS exhibited adequate performance to determine 18 elements of interest in the water-soluble PM_{2.5} fraction.
 - Al, As, Ba, Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Se, Sn, V, Zn
- Average ambient air concentrations of these 18 elements collectively account for ~ 0.4 μg/m³ (2%) of Steubenville's total PM_{2.5} mass concentration.
- Mean concentrations of As, Cd, Co, Pb, Mn, Ni, and Se in the water-soluble PM_{2.5} fraction were 1/5 to 1/1000 as much as chronic inhalation reference concentrations.
 - No RfCs available for key elements such as Cu, Zn, Fe, V
- Fifteen of the 18 elements studied had higher median concentrations during the warm season than during the cool season.
 - Same trend as total PM_{2.5}, SO₄²⁻
 - Possible causes still being explored

Summary

- Local sources in Steubenville contribute appreciably to concentrations of a number of elements in the water-soluble PM_{2.5} fraction.
 - Average concentrations of Fe, Mg, Mn, and Zn were more than twice as high at Steubenville as at background sites
- Application of UNMIX to ionic and elemental data from watersoluble PM_{2.5} yielded a 4-source solution.
 - NH₄+/SO₄²⁻ source accounted for ~55% of total PM_{2.5} mass
 - Mn/Zn source accounted for ~27% of total PM_{2.5} mass
 - Mn/Zn ratio similar to TRI ratio for primary metals industry
 - Highly correlated with local source contributions estimated from measured data
 - More strongly correlated with OM, EC, Al, As, Ba, Ca, Co, Cu, Fe, K, Mg, Na, Pb, Se, SO₂, NO_x, and CO than the other three sources
 - Cd and V sources were characterized by larger uncertainties; will be studied further using acid-digestible elemental data

Funding

U.S. DOE - National Energy Technology Laboratory

Ohio Coal Development Office

Electric Power Research Institute

American Petroleum Institute

National Mining Association

American Iron and Steel Institute

Edison Electric Institute

National Institute of Environmental Health Sciences

U.S. Environmental Protection Agency

CONSOL Energy Inc.

Participating Groups

CONSOL Energy Inc. R&D

Harvard School of Public Health

Franciscan University of Steubenville

Ohio University

Wheeling Jesuit University

St. Vincent College

Optimal Technologies

Air Quality Sciences, Inc.

Control Analytics, Inc.

Publications

- Connell et al. The Steubenville Comprehensive Air Monitoring Program (SCAMP): Overview and Statistical Considerations; *J. Air* Waste Manage. Assoc. 2005, 55, 467-480.
- Connell et al. The Steubenville Comprehensive Air Monitoring Program (SCAMP): Associations Among PM_{2.5}, Co-Pollutants, and Meteorological Conditions; *J. Air & Waste Manage. Assoc.* 2005, 55, 481-496.
- Connell et al. The Steubenville Comprehensive Air Monitoring Program (SCAMP): Analysis of Short-Term and Episodic Variations in PM_{2.5} Concentrations Using Hourly Air Monitoring Data; J. Air & Waste Manage. Assoc. 2005, 55, 559-573.

